Bayesian Inference of a Parametric Random Spheroid from its Orthogonal Projections
نویسندگان
چکیده
منابع مشابه
Bayesian Nonparametric and Parametric Inference
This paper reviews Bayesian Nonparametric methods and discusses how parametric predictive densities can be constructed using nonparametric ideas.
متن کاملBayesian inference via projections
Bayesian inference often poses difficult computational problems. Even when off-the-shelf Markov chain Monte Carlo (MCMC) methods are available to the problem at hand, mixing issues might compromise the quality of the results. We introduce a framework for situations where the model space can be naturally divided into two components: i. a baseline black-box probability distribution for the observ...
متن کاملRandom Projections with Bayesian Priors
The technique of random projection is one of dimension reduction, where high dimensional vectors in RD are projected down to a smaller subspace in Rk. Certain forms of distances or distance kernels such as Euclidean distances, inner products [10], and lp distances [12] between high dimensional vectors are approximately preserved in this smaller dimensional subspace. Word vectors which are repre...
متن کاملRandom projections for Bayesian regression
This article deals with random projections applied as a data reduction technique for Bayesian regression analysis. We show sufficient conditions under which the entire d-dimensional distribution is approximately preserved under random projections by reducing the number of data points from n to k ∈ O(poly(d/ε)) in the case n d. Under mild assumptions, we prove that evaluating a Gaussian likeliho...
متن کاملRandom Projections for Anchor-based Topic Inference
Recent spectral topic discovery methods are extremely fast at processing large document corpora, but scale poorly with the size of the input vocabulary. Random projections are vital to ensure speed and limit memory usage. We empirically evaluate several methods for generating random projections and measure the effect of parameters such as sparsity and dimensionality. We find that methods with s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Methodology and Computing in Applied Probability
سال: 2020
ISSN: 1387-5841,1573-7713
DOI: 10.1007/s11009-020-09806-w