Bayesian Inference of a Parametric Random Spheroid from its Orthogonal Projections

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Nonparametric and Parametric Inference

This paper reviews Bayesian Nonparametric methods and discusses how parametric predictive densities can be constructed using nonparametric ideas.

متن کامل

Bayesian inference via projections

Bayesian inference often poses difficult computational problems. Even when off-the-shelf Markov chain Monte Carlo (MCMC) methods are available to the problem at hand, mixing issues might compromise the quality of the results. We introduce a framework for situations where the model space can be naturally divided into two components: i. a baseline black-box probability distribution for the observ...

متن کامل

Random Projections with Bayesian Priors

The technique of random projection is one of dimension reduction, where high dimensional vectors in RD are projected down to a smaller subspace in Rk. Certain forms of distances or distance kernels such as Euclidean distances, inner products [10], and lp distances [12] between high dimensional vectors are approximately preserved in this smaller dimensional subspace. Word vectors which are repre...

متن کامل

Random projections for Bayesian regression

This article deals with random projections applied as a data reduction technique for Bayesian regression analysis. We show sufficient conditions under which the entire d-dimensional distribution is approximately preserved under random projections by reducing the number of data points from n to k ∈ O(poly(d/ε)) in the case n d. Under mild assumptions, we prove that evaluating a Gaussian likeliho...

متن کامل

Random Projections for Anchor-based Topic Inference

Recent spectral topic discovery methods are extremely fast at processing large document corpora, but scale poorly with the size of the input vocabulary. Random projections are vital to ensure speed and limit memory usage. We empirically evaluate several methods for generating random projections and measure the effect of parameters such as sparsity and dimensionality. We find that methods with s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Methodology and Computing in Applied Probability

سال: 2020

ISSN: 1387-5841,1573-7713

DOI: 10.1007/s11009-020-09806-w